CUBO DE COLORES EN 3D





import sys, math, pygame
from operator import itemgetter
class Point3D:
    def __init__(self, x=0, y=0, z=0):
        self.x, self.y, self.z = float(x), float(y), float(z)
    def rotateX(self, angle):
        """ Rotates the point around the X axis by the given angle in degrees. """
        rad = angle * math.pi / 180
        cosa = math.cos(rad)
        sina = math.sin(rad)
        y = self.y * cosa - self.z * sina
        z = self.y * sina + self.z * cosa
        return Point3D(self.x, y, z)
    def rotateY(self, angle):
        """ Rotates the point around the Y axis by the given angle in degrees. """
        rad = angle * math.pi / 180
        cosa = math.cos(rad)
        sina = math.sin(rad)
        z = self.z * cosa - self.x * sina
        x = self.z * sina + self.x * cosa
        return Point3D(x, self.y, z)

    def rotateZ(self, angle):
        """ Rotates the point around the Z axis by the given angle in degrees. """
        rad = angle * math.pi / 180
        cosa = math.cos(rad)
        sina = math.sin(rad)
        x = self.x * cosa - self.y * sina
        y = self.x * sina + self.y * cosa
        return Point3D(x, y, self.z)

    def project(self, win_width, win_height, fov, viewer_distance):
        """ Transforms this 3D point to 2D using a perspective projection. """
        factor = fov / (viewer_distance + self.z)
        x = self.x * factor + win_width / 2
        y = -self.y * factor + win_height / 2
        return Point3D(x, y, self.z)


class Simulation:
    def __init__(self, win_width=640, win_height=480):
        pygame.init()

        self.screen = pygame.display.set_mode((win_width, win_height))
        pygame.display.set_caption("Figura de cubo 3D en python")

        self.clock = pygame.time.Clock()

        self.vertices = [
            Point3D(-1, 1, -1),
            Point3D(1, 1, -1),
            Point3D(1, -1, -1),
            Point3D(-1, -1, -1),
            Point3D(-1, 1, 1),
            Point3D(1, 1, 1),
            Point3D(1, -1, 1),
            Point3D(-1, -1, 1)
        ]

        # Define the vertices that compose each of the 6 faces. These numbers are
        #  indices to the vertices list defined above.
        self.faces = [(0, 1, 2, 3), (1, 5, 6, 2), (5, 4, 7, 6), (4, 0, 3, 7), (0, 4, 5, 1), (3, 2, 6, 7)]

        # Define colors for each face
        self.colors = [(255, 0, 100), (100, 0, 0), (0, 25, 0), (0, 0, 255), (0, 255, 155), (255,5, 0)]

        self.angle = 0
    def run(self):
        """ Main Loop """
        while 1:
            for event in pygame.event.get():
                if event.type == pygame.QUIT:
                    pygame.quit()
                    sys.exit()

            self.clock.tick(50)
            self.screen.fill((0, 32, 0))

            # It will hold transformed vertices.            \
            t = []

            for v in self.vertices:
                # Rotate the point around X axis, then around Y axis, and finally around Z axis.
                r = v.rotateX(self.angle).rotateY(self.angle).rotateZ(self.angle)
                # Transform the point from 3D to 2D
                p = r.project(self.screen.get_width(), self.screen.get_height(), 256, 4)
                # Put the point in the list of transformed vertices
                t.append(p)

            # Calculate the average Z values of each face.
            avg_z = []
            i = 0
            for f in self.faces:
                z = (t[f[0]].z + t[f[1]].z + t[f[2]].z + t[f[3]].z) / 4.0
                avg_z.append([i, z])
                i = i + 1
            # Draw the faces using the Painter's algorithm:
            #  Distant faces are drawn before the closer ones.
            for tmp in sorted(avg_z, key=itemgetter(1), reverse=True):
                face_index = tmp[0]
                f = self.faces[face_index]
                pointlist = [(t[f[0]].x, t[f[0]].y), (t[f[1]].x, t[f[1]].y),
                             (t[f[1]].x, t[f[1]].y), (t[f[2]].x, t[f[2]].y),
                             (t[f[2]].x, t[f[2]].y), (t[f[3]].x, t[f[3]].y),
                             (t[f[3]].x, t[f[3]].y), (t[f[0]].x, t[f[0]].y)]
                pygame.draw.polygon(self.screen, self.colors[face_index], pointlist)

            self.angle += 1
            pygame.display.flip()


if __name__ == "__main__":
    Simulation().run()

No hay comentarios:

Publicar un comentario